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Cell Cooling Historical Background

When the power input to cells is stopped, the internal cell
heating due to the “Joule heating” effect stops.

But, cells continue to dissipate heat at nearly the same
rate as during normal operations with approximately
35% of the heat being transferred from the sidewalls 45 %

of the heat is transferred from top area of cells.

When power is off, the electrolyte temperature typically
decreases at a rate of 15-20°C per hour. Cooling the
electrolyte in cells below ~850 °C results In the
solidification of bath and the shutdown of the operating
cells in the potlines.




.
Cathode Cooling Cracks

The rapidly cooling of aluminum
cells from 960°C to ambient 25°C
due to potline shutdown results in
the generation of cooling cracks on
the cathode surface of nearly all
cells in which the metal pads are
removed and the surface is cleaned
for inspection.

The cracks are formed in the
cathode block during cooling and
not during cell operation as
indicated by the absence of bath or
a yellow film of aluminum carbide
on the surfaces of the crack.




The Fracture Behaviour of Carbon

The thermo-electro-mechanical behaviour of new cathode
carbon has been described as elasto-plastic. Carbon cathode
blocks initially behave elastically with reversible deformation
as stress is applied, but when stress increases the carbon
material starts to behave in a plastic manner with irreversible
deformation until fracture occurs.

The cathode carbon is weakened as it undergoes ductile-brittle
transformation during cell operation due to the cathode lining
eventually becomes saturated (>3%) with sodium that
intercalates and absorbs into the carbon lattice. This causes
swelling and changes the properties of the carbon lining which
makes the cathode material less ductile and more brittle.




Thermal Gradients in the Cathode Lining

Rapid cooling of cathodes due to power interruption generates
an uneven temperature distribution in the cathode lining
which results in a thermally induced mechanical stress
sufficient to cause cracking.

During cooling the top of the cathode blocks cool faster than
the bottom of the cathode blocks resulting in large
temperature gradients in the cathode lining.

Sgrlie and Oye, report that, “due to the very limited elasto-
plastic deformation properties of carbon during rapid thermo-
mechanical strain, the accumulated stress will be released in
the form of surface energy as the bottom cooling cracks.”




Thermal Gradients in the Cathode Lining

Cooling cracks weaken
the carbon Ilining as
some may fill with
aluminum upon restart;
some cracks continue to
expand and link up and
become a basis for
failure in the future.

The average loss in pot
life due to shutdown
and restart of individual
potlines is about 200
days, but varies from
100 to 400 days at
different aluminum
smelters.
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Thermal Cooling Modeling
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New ANSYS® based thermal cooling models, (2D+ full cell slice model, 3D full side
slice model and a 3D full cell quarter) were developed to determine the cathode
cooling rates, the differences in the temperature gradients and the resultant stress
from cooling cathodes for 24 to 48 hours.




.
Thermal Cooling Modeling

The initial conditions of the cooling models are those obtained by the steady-state
thermo-electric models. The prebake cell is operating at 300 kA and 0.73 A/cm2 of
anode current density.

The cell is dissipating 610 kW while operating with a 6 °C liquidus superheat and 7 cm
of ledge at the bath level and 4 cm ledge at metal level. The cell is operation at a 5 cm
ACD with 20 cm of metal and 20 cm of bath.

Contrary to the approach used in steady-state models, the liquid zone as been added to
the cooling models. Both the initially liquid bath and metal new materials have time
dependent properties that cover the physic of the phase change:

1) Different thermal conductivities before and after the phase change

2) Different specific heat before and after the phase change

3) Different specific heat between the liquidus and the solidus temperature to
cover the latent heat of fusion




.
Effective Thermal Conductivity of the Liquid Metal

The concept of effective thermal conductivity is a convenient way
to account of the effect of the heat transfer by natural convection
in the metal pad without having the model the natural convection
flow 1tself. Using the equation 11 proposed by T. Hadgu and al.,
the effective thermal conductivity of the liquid metal pad was
estimated to be around 20 times its motionless thermal

conductivity as the metal pad Rayleigh number was estimated to
be around 4.9x108:

keff: 0057 * Ra.0'296
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o
2D Side Slice Model: 20 cm Metal Pad

Temperature
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2D Side Slice Model: 20 cm Metal Pad
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3D Side Slice Model: 20 cm Metal Pad
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3D Side Slice Model: 20 cm Metal Pad

Bath cooling curve
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3D Side Slice Model: 20 cm Metal Pad

Temperature
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3D Quarter Model: 20 cm Metal Pad

Temperature
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3D Quarter Model: 20 cm Metal Pad
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.
Thermo-Mechanical Modeling

The next step is to use those thermal results to carry out the thermo-mechanical analysis.
This step can be quite difficult as the mechanical behaviour of the cell lining is quite
complex.

Contrary to the thermal problem, in initial state on the mechanical problem is totally
unknown. Some thermo-electro-mechanical models of cell preheating have been
reported in the literature, there are also cathode swelling mechanical models available,
but no thermo-electric-chemical-mechanical models of the cell in steady state operation
have been model to date.

The thermo-mechanical models developed in this work are the simplest possible, they
only model the cathode block using elastic mechanical properties to represent the
cathode block mechanical behaviour which is a large simplification of the actual
problem.

Furthermore, they assume that at time zero, in steady state operating condition, the
cathode block is stress free under no mechanical constrains. As cooling proceed, the
thermal load that will be use to carry the thermo-mechanical study is the differential
temperature between the current thermal condition and the initial steady-state thermal
conditions.
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2D Side Slice Model: 20 cm Metal Pad
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2D Side Slice Model: 20 cm Metal Pad

Stress
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3D Side Slice Model: 20 cm Metal Pad
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3D Side Slice Model: 20 cm Metal Pad

Stress
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3D Quarter Model: 20 cm Metal Pad

1

VAW Full Cell Quarter Demo Model
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3D Quarter Model: 20 cm Metal Pad

1

Stress
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.
Models Applications

Even if the current thermo-mechanical cooling models
are not perfect, they never-the-less constitute useful tools
to investigate and 1dentify potential solutions to the
cathode block cracking problem due to cell cooling.
Since it was clearly indentify that the reversed vertical
gradient 1n the cathode block 1s generated by the
excessive cooling efficiency of the metal pad, the models
have been used to investigate the impact of removing 2/3
of the aluminum metal pad at the very beginning of the
cell cooling.




2D Side Slice Model: 7 cm Metal Pad
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2D Side Slice Model: 7 cm Metal Pad
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3D Quarter Model: 7 cm Metal Pad

Temperature
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3D Quarter Model: 7 cm Metal Pad
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3D Quarter Model: 7 cm Metal Pad
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3D Quarter Model: 7 cm Metal Pad

1

Stress
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Conclusions

e New ANSYS® based thermal cooling models, (2D+ full cell slice model, 3D full side slice
model and a 3D full cell quarter) were developed to determine the cathode cooling rates,

the differences in the temperature gradients and the resultant stress from cooling
cathodes for 24 to 48 hours.

e Those thermal results have been used to carry out the thermo-mechanical analysis.

e The thermo-mechanical models developed in this work are the simplest possible, they
only model the cathode block using elastic mechanical properties to represent the
cathode block mechanical behaviour which is a large simplification of the actual
problem.

e They also assume that at time zero, in steady state operating condition, the cathode block
is stress free under no mechanical constrains. As cooling proceed, the thermal load that
will be use to carry the thermo-mechanical study is the differential temperature between
the current thermal condition and the initial steady-state thermal conditions.

e Since it was clearly indentify that the reversed vertical gradient in the cathode block is
generated by the excessive cooling efficiency of the metal pad, the models have been used
to investigate the impact of removing 2/3 of the aluminum metal pad at the very
beginning of the cell cooling.




